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!i THE INFLUENCE OF A LOCAL WALL DEFORMATION ON THE
DEVELOPMENT OF NATURAL INSTABILITIES IN A LAMINAR

BOUNDARY LAYER

S. Burnel*, P. Gougat**, and F. Martin

Abstract /417

The natural instabilities propagated in the laminar boundary layer

" of a flat plate are composed of intermittent wave trains.

Spectral analysis of these fluctuations can determine their

frequency. There always arises a frequency f, but the harmonic 2f

only appears if there is a wall deformation. Spectral analysis also

gives the amplitude modulation spectrum of the instabilities. Plots

of the evolution of their power-density spectrum are compared with the

numerical results obtained from solution of the Orr-Sommerfeld

equation, while the harmonic is related to a microflow along the

wall deformation.

Introduction

In the boundary layer of a flat plate, the transition from a

laminar state to a turbulent one starts with the development of

unstable frequencies. This harbinger of transition has been studied

by Tollmien [i] and Schlichting [2]: By introducing two-dimensional /418

velocity perturbations, defined by a current function, into the

Navier-Stokes equations, the Orr-Sommerfeld equation is obtained.

Its solution supplies the elements for the theory of stability:

Depending on the magnitude of its reduced frequency _* and the

Reynold's number of the flow NR_I, the perturbation introduced into
the boundary layer is either amplified or attenuated by a coef-

ficient e.. The linear amplification in the first stages of the
! l

*University of Orleans-La Source, Applied Mechanics and Energetics
i Laboratory, 45100 Orleans, France

i **CNRS Aerothermics Laboratory, 4 ter, route des Gardes, 92190
Moudon, France

_'Numbersin the margin indicate pagination in the foreign text.



process then gives rise to spots of turbulence whose coefficient of

intermittence grows until an actual state of turbulence is reached.

It seems that the entire transition phenomenon is ruled by

the development of such instabilities. The first experimental

verification of this was made by Schubaure and Skramstad [3], who

used a vibrating band to introduce sustained perturbations in the

boundary layer. More recently, Jordinson [4] took into account

the thickening of the boundary layer and studied the influence of a

pressure gradient on the development of instabilities. These
.I

different comparitive studies dealt with artificial initiations of

the transition phenomenon. While we have constantly used such

work as a point of reference, our own study in fact concerns the

influence of a wall deformation on the position of natural transition.

The complexity of the phenomenon has led us to look at both the case

of a wall deformation and that of a flat plate at the same time.

In the course of our study of natural instabilities, we en-

countered an unexpected problem -- the appearance of a harmonic

of the instabilities at a right angle to the wall deformation.

. Experimental Equipment

2.1. Wind Tunnel

J Measurements were made in a subsonic wind tunnel of the Eiffel

type. The test stream had a square cross section (0.5 m on a side)

and a length of 1.5 m. It was preceded by a convergent nozzle with

a contraction ratio of 9. The speed of the flow could vary from

4 to 30 m/sec. For speeds of between i0 and 25 m/sec, the relative J
level of longitudinal speed fluctuations, /_-_!/U, remained _,_ I

basically constant and equal to 0.4%_ In addition, spectral
analysis of the fluctuations in the tree flow speed revealed a flat

spectrum without any singularity that could prematurely initiate /419

transition. A weaker preturbulence might push transition slightly

upstream without changing the structure of the phenomenon. Such

a shift would not interfere at all with the comparative study of



the development of instabilities in the presence of a wall singularity.

An incremental two-directional displacement mechanism made it

possible to position hot film sensors with 0.i mm steps in the

ordinate and 1 mm ones in the abscissa.

2.2. Deformable Plate

The study was conducted in the boundary layer of a deformable

flat plate. To avoid spurious vibrations, the plate was placed on

four supports held by a chassis independent of the wind tunnel struc-

ture. It was preceded by an elliptical leading edge with an aspect

ratio of i0. Studying the effect of a local wall deformation on the

boundary layer was greatly facilitated by the machined deformable

plate. The plate served as a cover for a metal frame in which

three independent, sealed cavities were bored. In the lower section

of each cavity were two orifices for increasing or reducing the

air pressure to produce concave or convex deformations in the plate.

The amplitude of the deformations was measured by a capacitive

displacement pickup. The beginning of the first cavity was located

at an abscissa xo of 178 mm from the leading edge. The length I of

each cavity was i00 mm. The abscissa relative to the first cavity

will be referred to as x* = x - xo. Only the first cavity was
used in the present study, and we worked with constant pressures,

which led to unchanging wall deformations. The amplitude of the

wall deformations did not deviate by more than 10% from a sinusoidal

variation of the type y = a[l-cos(2_x*/l)]. The maximum amplitude

2a will be u_ed to characterize the attained deformation at x* = _/2.

• Finally, note that the two-dimensional character of the deformation

was conserved over 90% of its span.

2.3. Hot Film Anemometer

The measurements of average velocity and of velocity fluctuations

were made with the help of an anemometric circuit. The sensitive \

element was either a wire or a film. The results presented here were

obtained with a platimum film depositied on a quartz rod 25 _m

3



_ in diameter. We simultaneously used a split film sensor to find the /420

direction of the velocity vector in the boundary layer. The sensor

was made up of a quartz bar 150 um in diameter and 2 mm long on which

two platimum films were deposited. The plane dividing the two

films was parallel to the plane of the plate. The films were controlled

at constant resistance by two independent anemometric circuits. In

two-dimensional flow, the ratio between the heat fluxes CA and _B
released through convection at each film made it possible to measure

the angle made by the velocity vector with the plane dividing the

sensor. The sum of the heat fluxes on each film gave the magnitude

of the velocity vector.

The sensor was adjusted through the choice of functional

resistances for each film. These resistances were chosen so as to

make the ratio #A/¢B equal to one for an angle of incidence e of

_ zero [5]. Under such conditions, for e = 90°, the ratio #A/_B
!

remained constant for speeds rangin_ from 5 to 16 m/sec.
(

i
We calibrated the differen-

(w) " : fa • : _b

"_ ":_'_b tial probe for an angle _ of

i i0°: It is interesting to note

that the variation of the fluxes

¢A and _B followed a Collis and
Williams type of power function

as if only a single cylindrical

I film were involved. In figure i,

we have plotted the flux of each
]. 5 6 7 8 9 IO 20 Ue(mls]

film as well as the total flux

! Figure 1 _A + _B" Calibration of the /421
! • Exterior Flow Speed Ue vs. sensor, giving the variation of
i Total Convection Flux _A+_B
i and also vs. the Flux of Each the ratio R between the fluxes

" of the Probes Films (_A and _B) _A and _B as a function of the
|

angle of incidence _ and the

I Reynolds number, has been accomplished by Olin and Kiland [6] We
!- adopted the following approximate independent quadratic equation

to analyze the measurements:

!
4
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RR0(iRo_R9 o 9-0

with R0 and R90 representing the values of the ratio R for angles
of 0° and 90 ° .

2.4. Frequency Analysis

The power-density spectrum of velocity fluctuations was

determined by means of a real time analyzer.

The apparatus included an intake memory which received the

signal in the form of a digital sample. The rate the memory was

reread at was greater than the data entry rate. The signal samples'

time scale was compressed before the data was fed into a heterodyne

filter. This allowed the exploration of frequencies to be accelerated

while at the same time maintaining a high degree of statistical

precision. As an example, for an analysis ranging from 0 to

1,000 Hz, the sampling frequency would be 3,000 Hz, and the time

it would take to fill up the memory would be 0.2 sec. With a time

compression factor of 1,000, in 40 x 10-3 sec we would have an

instantaneous analysis of 200 points with an effective resolution of

9.4 Hz. (This figure takes into account the frequency sweep and

the weighting function for signal truncation effects.)

The power-density spectrum was obtained by numerical integration

of a great number of instantaneous spectra. Our measurements were

made by accumulating 2,048 spectra, which corresponds to a sampling
time of 6 min.

The use of a tape recorder in conjunction with the real time

analyzer provided us with some interesting possibilities. The

velocity fluctuation signal was recorded and played back at a slower

speed before being fed into the anlyzer's memory. We thus had a

simultaneous oscillocope display of a portion of the instantaneous

sign,zland of the instantaneous spectrum of this sample. The

change in speed brought about by the tape recorder also enabled

us to watch the signal go by and block in the memory the most

5



! "

I:I significant transient portions.
z_

iI 3. Influence of the Wall Deformation on the Exterior Velocity Gradient /422i-
_i 3.1. Measurement of the Velocity Gradient

ii The development of the

ii A . 2,-,ram ]_ J_'_i ! boundary layer is a function of-4-/-A:
° "--,mm _ .... i/ _' the boundary conditions. It is

ii ! !!i[i_m_ -___ /_! i......... therefore as necessary in flat
i - 2 ..... plates as deformed ones to

: 0 I _v measure the longitudinal

_i_ \'__._2_-!-_--'- velocity gradient at the edge of

-2 _ _[....__'----- the free flow boundany layer.

"_ -'.<_ii--_.........The results are presented in
0 so 100 x'_mm_ figure 2, where the gradient is

I00 150 200 250 X {ram

characterized by the value of

the Polhausen parameter A =
i Figure 2

Polhausen Parameter Curves I / _t /_2/_j _dUe/dX). The experimental

Showing Experimental Values curves intersect at x* = 0 and
Obtained as a Function of x* = 50 mm. This result isx and x* for Different Wall

I Deformation Amplitudes explainable when the deformation's

(U= = 16 m/sac) profile is sinusoidal. The

potential flow along the profile

is then of the form:

ue
- 1+ 27tae-2"rl_cos2;tx*,

from which 2rtx*
A = K=e-2_y/_sin--,

l

. which corresponds to a bundle of curves cutting the A = 0 axis at

the points x* = 0, x* = _/2, and x* = _. The experimental curve

bundle differed slightly from this because the deformation of the

i plate had a finite length _. In addition, the elliptical leading /423

edge induced a velocity gradient which modified the potential flow

expression.

: ?

6 ",



3.2. Transition Position

Previous experimental work showed that the phenomenon of

transition on a flat plate is not characterized with enough precision

by the evolution of the average velocity profile, which gradually

changes from a Blasius profile to a turbulent one [7]. In contrast,

the study of how longitudSnal fluctuations develop provided a

. "transition criterion" that was a little more precise.

i Figure 3 Figure 4

i Velocity Fluctuation Rate Influence of the Wall Defor-
vs. Ordinate on a Flat mation on Transition Position

J Plate for Various Abscissas (U = 16 m/sec)
i (U = 12.5 m/sec)

i
i In figure 3, we show how the /_/U e level changes as a function
i _ of the ordinate for various abscissas. Both the maximum value of
I
! /_-7_/Ue and the ordinate at which it is achieved depend on the

- abscissa. To avoid the difficulties of a three-dimensional

' representation. (/_n-Z/Ue = f(x,y)), we have characterized each of the

i /_-7-f/Ue = f(y) curves by the value of its maximum, which we have

J labled (_'2/Ue)max.

The variation of the quantity (/_'-_/Ue)max as a function of
the abscissa is presented in figure 4 for both the flat plate and

7
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two different wall deformation amplitudes. These curves have in /424

turn a maximum whose abscissa could be adopted as the criterion for
transition.

Thus, a negative wall deformation with a -1 mm amplitude causes

transition to shift forward by 37%. Note that there is only a 3%

difference between the forward shift due to positive deformations

. (+i mm) and negative ones (-i mm).

. In fact, the abscissas at which this criterion is applied

correspond to states of transition which are already advanced, and

the overall measurements only illustrate the significant effect a wall

deformation of small amplitude has on the phenomenon.

In order to study pretransitional mechanisms, we had to

investigate the detailed structure of the instantaneous signal in

the zone where the Reynolds number was close to the critical value.

This enabled us to discover the frequency range of the natural

instabilities and their coefficient of amplification.

4. Observation of the Velocitz Fluctuation Signal

4.1. Elimination of Low Frequencies

Oscilloscopic observation of the instantaneous signal showed/

the existence of low frequencies (below 200 Hz). We attempted to

describe the changes in the effective value of such frequencies.

They were present from the leading edge onward and existed in the /425

laminar zone. Their variation as a function of the abscissa did

not seem to exhibit any distinguishing feature. It seemed possible

to explain them by the unstable position of the stop point on the

leading edge.

We will limit ourselves to mentioning their existence. In so

far as the low frequencies did not appear to influence transition,

the rest of the study used a filtered instantaneous signal.

8



4.2. Inteqrated Spectra

Thus, after filtering out the low frequencies, the velocity

fluctuation signal was fed into the analyzer. The signals'

power-density spectrum is presented in figure 5 for an abscissa

x* = 50 mm and an ordinate y = 0.i mm, which is where the signal to

noise ratio was the best:

-- Case a refers to a flat plate. The frequency r_nges from

. 300 to 700 Hz, and, for a Reynolds number of 630, the maximum

energy level within this range is located at the frequency fl =
500 Hz.

-- Case b refers to a deformed plate. In addition to the

energy contribution at 500 Hz, a second maximum is located at f2 =
1,000 Hz for the Reynolds number under consideration.

4.3. Instantaneous Signals and Their Spectra

Detailed observation of the instantaneous signals was obtained

with the aid of the real time analyzer after speed reduction by_means

of a tape recorder. The instantaneous signal sample was put in the

memory and then analyzed. Simultaneous displays of the instantaneous

signals and of their spectra are shown in figure 5

/

-- Case c corresponds to a signal sample obtained on a flat

plate: The instantaneous signal was a relatively pure sinusoid,

modulated in amplitude. The instantaneous spectrum, like the

integrated one, exhibits a maximum energy level at a frequency of
500 Hz.

-- Cases d, e, and f correspond to three samples involving

deformed plates. The instantaneous signals were no longer pure

sinusoids. For cases d and e, the instantaneous spectra simultaneously

exhibit a frequency fl of 500 Hz and a frequency f2 of 1,000 Hz.

In contrast, case f's spectrum only exhibits the 1,000 Hz f2
frequency.
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• °

c 4

e f
Figure 5

Integrated Spectra of aPortion of the Signal Obtained:
a) Flat Plate, 2a = 0, at x* = 50 mm and y = 0.i mm

b) Deformed Plate, 2a = -i, at x* = 50 mm and y = 0.i mm
Unstable Bursts Characteristic of the Hot Wire Signals

and their Instantaneous Spectra (U_ = 16 m/sec):
c) Flat Plate; d,e,f) Deformed Plate

The strudtures of instantaneous signals obtained with a /427

flat plate and with deformed ones were similar. In both cases,

the fundamental frequency appeared in the form of intermittent

wave trains. In deformed plates, the fundamental was altered by

a harmonic, but its structure remained the same (frequency, inter-

mittent character).

4.4. Identification of the Harmonic

The signal samples reproduced in figure 5 show that the f2

I0



iI
!_ frequencies were twice those of fl" The harmonic of the insta-

bilities was thus involved here. (Note that only the first harmonic
existed_ This was confirmed for other free flow speeds and other

i_ abscissas: When the Reynolds number was change_ the fl frequency

i varied, but the f2 frequency remained double fl" What is more,
examination of the instantaneous signals in figure 5 shows that the

energy present in the spectrum at f2 is due to a perturbation

grafted on to the sinusoid of frequency fl" The fact that only the
first harmonic existed eliminates the proposition that the electronic

signal processing circuits were saturated. For the same amplitude

wall deformation and for a given sensor position, all the samples

were not contaminated in the same way by the f2 frequency. In

particular, we see in figure 5 that the contribution of f2 was greater

in sample e than in sample d. Sometimes the fl frequency disappeared

completely to the benefit of frequency f2" This was the case in

sample f.

4.5. Identification of the Fundamental Frequency

Obremski's and Morkovin's theoretical results [8] concern solving

the Orr-Sommerfeld equation so as to trace the equal amplification

curves in the _*, NR61 plane for the case of a spatial variation in
the instabilities. At a given Reynolds numbed it is possible to

calculate the range of unstable frequencies having maximum ampli-

fication.

The experimental results concerning the fl frequency on a flat
plate for different Reynolds numbers were in good agreement with the

theoretical ones (figure 6). However, it is interesting to return

to the instantaneous signal samples of figure 5 in order to note that

the period of the phenomenon seems constant although the analysis

wide spectrum around fl. We have tried to interpretresulted in a

this phenomenon in terms of amplitude modulation. The details are /428

given in figure 7. Let us start with a section of the instantaneous

signal (figure 7a) and its spectrum (figure 7a') and look for an

analogy with a simple model of a pure sunsoid of frequency f whose

amplitude is modulated by a low frequency f' (figure 7b). The

ii



_.2_f_I0_ , spectrum shows a line at

o cxp_,_.,€.b frequency f and two modulation

12 . _ lines at f ± f' (figure 7b').

i The conventional approach in signal8 processing for isolating the

f' frequency is to carry out a
full wave rectification of the

i signal (figure 7c). The spec-

0 _ trum of the rectified signal

Too 9o0 _00 _300 R_ includes a line at a frequency

of 2f, two modulation lines at
Figure 6

Frequency vs. Reynolds Number 2f ± 2f', and at all the higher
in Relation to Thickness harmonics as well, and finally

of Boundary Layer Displacement
NR__ = U_I/_ a line at f' (figure 7c'). The

--, Theoretical Maximum model can in fact allow for mod-
Amplification Curve ulation by narrow band noiseO, Experimental Points

2a = 0 (figures 7d and 7d'),and recti--

Key: a) Theory fication would result in iso-
b) Experiment lating a continuous modulation

spectrum (figures 7e and e').

The same procedure of full wave rectification could be applied to the

sample of the physical signal (figure 7f). _nalysis of the

rectified signal uncovers a whole range of low frequencies con-

' stituting a continuous modulation spectrum (figure 7f'). We can thus

explain why the instantaneous signal samples were made up of pure

/ sinusoids while their spectra only contained a single line. In

fact, it is difficult at the present state of signal processing to

decide on the origin of the modulation spectrum: Two phenomena are

simultaneously at play, the actual modualtion of the unstable bursts /430

and the intermittence function for these bursts. We have hypothesized

that these two phenomena are provoked by the low frequencies present
t

in the boundary layer, but the correlation between the modulation

spectrum and the spectrum of low frequencies cannot be documented

except by modifying the low frequencies' power-density spectrum.

12



Q a'

, b b°

C C'

f t °

Figure 7
Amplitude Modulation by a Low Frequency Spectrum

Time Scale: 8 x 10-3 sec/square for Instantaneous Signals,
i00 Hz/square for Spectra

a) Unstable Burst on a Flat Plate for a Reynolds Number of iii0
b) Sinusoid with Amplitude Modulation

c) Signal b after Full Wave Rectification
d) Sinusoid Modulated by Narrow Band Noise
e) Signal d after Full Wave Rectification

f) Unstable Burst in a after Full Wave Rectification
a' b' ' ' ' ', ,c ,d ,e , f : Spectra of Signals a,b,c,d,e,f, Respectively

13



5. Measurement of Energy for the Fundamental Frequency

5.1. Variation as a Function of the Ordinate

We have now established that for a given Reynolds number, the

instabilities have a fixed frequency fl and that this frequency

corresponds to the power-density spectrum maximum for the velocity

fluctuations in the range of analysis under consideration. We

will designate the energy contribution made by the fluctuations

of frequency fl as (_u'2/Ue)fl.

We will only examine the variation in this quantity at a single

abscissa (x* = i00 mm), and only for two deformation amplitudes

(2a = +i mm and 2a = -0.5 m_), but the phenomenon is of the same type

for a flat plate.

Case of the Positive Deformation 2a = +l mm

The variation in energy at frequency

I_l Io.:2_..'mms_0 I fl as a function of y/_ is shown in figure
I°'_ _ l..:_o.-0Smm;_>0I 8. A first maximum exists at y/6 =

"'°s]_ I 0.18. This maximum can be attributed
2o / __u__T___ to the presence of a point of inflection

• __\ in the average velocity profile. According
to Karman-Pohlhausen, the velocity profile

__/_-___ can be represented by a fourth order poly-

nomial approximation in y/_. The poly-

nomial's coefficients depend on the

s _ parameter A, characteristic of the exter-

F_gure 8 ior velocity gradient. The point of
. Energy of fl Insta- inflection on the velocity profile

bilities vs. y/6 (d2 = 0)is obtained forand Profiles of Cor- (U/Ue)/d(Y/6)2
responding Average y/_ = -A/(12-2A). For our experimental

Speeds conditions, x* = 100 mm, 2a = +i mm, one
U_ = 16 m/sec, x*=100 mm

6B=2.51, NR_I=937 finds that A = -3.5 and thus y/_ = 0.184,
which is little different than the ordinate

of the first maximum. This correlation between the amplification of
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of the instabilities and the point of inflection on the velocity

profile was proposed by Tollmien to be a singularity of the Orr-

Sommerfeld equation.

The second maximum occurs at y/6 = 0.35,which is in good

agreement with the experimental results of Ross, Barnes, and

Burns [9]. Note that not only the value of this maximum, but also

its ordinate in the boundary layer varies as a function of the /431
t

Reynold's number. However, in all cases the maximum's ordinate

is such that the average speed at this point is U/Ue = 0.4, which

corresponds to another singularity in the Orr-Sommerfeld equation, at

which the velocity is equal to the phase velocity of the instabilities.

Thus, it is the value of the maximum that is useful to us in char-

acterizing the state of instability amplification at a given abscissa.

A third maximum existsin the neighborhood of the boundary

layer's edge. We do not attach any importance to this maximum

because it concerns an input of energy at the fl frequency resulting

from the general return of the spectrum to the continuous spectrum

of free flow.

Case of the Negative Deformation 2a = -0.5 mm

The results are presented in figure 8.

/
There is no point of inflection on the average velocity

profile and therefore no first maximum at y/6 = 0.2. This is due

to the fact that for the abscissa and deformation under consideration,

the A parameter is positive.

The maximum energy level is located at the point where the

speed U/Ue = 0.4.

Thus, the variation of the power-density spectra of the

fl instabilities along the normal to the wall depends on the sign
of the exterior velocity gradient. However, the variation exhibits /432

an extremum characteristic of the state of instability amplification

15



in both cases presented here. We can now justify the choice of

these two deformation amplitudes for figure 8. We chose a positive

and a negative amplitude leading to the same state of amplification

at x* = i00 mm. We thus showed that the existence of a first

maximum is independant of the state of instability amplification and

depends only on the presence of a point of inflection on the

velocity profile.

" 5.2. Variation as a Function of the Abscissa

The variation of the maximum

^ _°+.o,+........d i + : level of instability as a function of

• /_ 'i /'f\[\' the abscissa is traced in figure 9.

--/----_'_t\i4:_ --_--/_----I\---_\ The curves in the figure express the
7_.--_.___7_=._'-_ - spatial amplification of the insta-

.2_ /i/_ k /] ___ Dimities for a flat plate and for two
• .--./ different deformation amplitudes

''°'°. / 1 The amplification curve for the

'_ ''°'"_ / ! flat plate is monotonic:
• 2°,-Imm. /

LO /m

'° ...II/_- _k__ Its slope represents the amplifica-.......... _ tion factor. For an abscissa x* =
2o • ;.

50 mm corresponding to a Reynolds
t number NR_1,0 ,®_.,_ = 870, the experimental

amplification coefficient -ei61/NR_l
Figure 9 at the reduced frequency m* = 1.2 x i0 "

Amplification Coefficients -5
equaled 2.i x I0 and did not differ

of fl Instabilities vs.
Exterior Velocity Gradient by more than 3% from the the theoretical

(U_ = 16 m/sec) value obtained from the Obremski-

Key: a) Velocity Gradient Morkovin tables.

The curves for the defomable wall exhibit localized changes

in curvature at abscissas which depend on the sign of the deformation:

-- For a positive deformation, the favorable gradient (A > 0)

intervenes at the beginning of the amplification and attenuates the
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instabilities. Their energy level at x* = 60 rom is less than at

x* = 30 rom.

For a negative deformation, the instabilities are already

greatly amplified by the time the favorable gradient (A > 0)

intervenes. The gradient can only reduce the amplification very

slightly and does not succeed in attenuating the instabilities.

The amplification curves in figure 9 are not traced beyond the

abscissa x* = 100 because in the presence of a wall deformation of

either sign, the unstable bursts exhibit a wide spectrum corresponding

to a complete breakup, and it becomes impossible to characterize

the evolution of transition by the selective amplification of one

unstable frequency.

At a right angle to the deformation in a given section, the

effect of the exterior velocity gradient depends on the energy

level attained by the instabilities in the section. There is there­

fore no direct corrspondence between the state of amplification and

the local value of the A parameter.

6. Energy Measurement for the Harmonic

6.1. Variation as a Function of the Ordinate

In figure 10 we have plotted the relationship between y/o

and the energy level of the fluctuations in relative velocity at a

frequency f, i.e. the quantity (/u I2 /Ue )f for frequencies f l (curve

a) and f 2 (curve b). These values were obtained for a wall de­

formation amplitude 2a = -1 mm and an abscissa x* = 50 rnrn. Curve

b shows that the unstable frequency f 2 had maximum energy at a

reduced ordinate y/o of 0.1, which corresponds to a small distance

from the wall (between 0.1 and 0.2 rnrn). Curve c represents the

variation as a function of y/o of the ratio (/u· 2/u )f !(/U'2/U )f '

h ' h t 't' h .. e;2 e 1w lC was a 1 s maxlmum near t e wall, attalnlng there a value

on the order of 55% and decreasing very rapidly with increasing

distance since the f l frequency was dominant.

17



We were especially interested

!_0u_ 2a=-Imm [_._ in the maximum energy level for fre-_=50mm/_. [_0_5 quency f2 and in the maximum value of
30 /_-/ the energy ratio between the two fre-

quencies.

20----I-- - _ 6.2• Variation as a Function of the

3 Abscissa

The set of curves in figure II

o- 1 represents the dependence of max-

/ imum energy, i.e. the quantity

92/_q 02 o_ y/s06 (u/_T_/Ue)f2max, on x* for various
deformation amplitudes. Notice thatso

/"\'_. ........ Col the greater the amplitude of the
0 a2 0_ Y/_ as deformation, the more visible the

phenomenon was. Note also that the /435

Figure i0 curves have a maximum at an abscissa
Ordinate Dependency of

x* of between 50 and 70 mm, dependingEnergy of Instabilities at
Frequencies fl (a) and on the deformation amplitude,and
f2 (b) and of the Har-

monic Rate (c) therefore downstream from the middle
U_=16 m/sec, 2a=-i mm, of the cavity.

x*=50 mm, 6B=2.27

.2a,2smo l I .2o.,mm
[ U, /_f"x _ : 2a=-1OOrn,

/ ma_ • : 2a =-075ram fl • :2a=-O.75mm.

x135 1 =: 2a =-0.50ram max. . :2 a =-0.50ram.
3 ,,\ = : 2a =-025mm / , :2a=-O25mm.
i 50"/. t - --

=. J 25

1 I

50 100 X'lmm 0 50 100 X'(mm}

Figure ii Figure 12
Energy of Instabilities of Frequency Harmonic Rate vs. Abscissa

f2 vs. Abscissa for Various Wall (U= = 16 m/sec)
Deformation Amplitudes (U==16m/sec)
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On the contrary, curves representing the variation of the

maximum ratio between the two energies as a function of x* (fig-

ure 12) attain a maximum for abscissas of between 40 and 60 mm, /436

and therefore upstream from the middle of the cavity. The curves

then rapidly tend toward horizontal asymptotes.

In figure 13, we have

i[iTi_ plotted the curves showing the
x_5mm (')I i dependence on amplitude 2a of max-

x105_" ii !i t /'!!_(b)li i '/'" imum energy at frequency f2 (curve

3 __/ I I13°_ a) and of the maximum energy

2 _ 20 ratio between the two frequencies

I i 10 (curve b). The latter curve exhibits

0 _5 -2_ 15 a change in curvature between

-0.75 and -i mm, which does not exist
Figure 13

Dependence of Energy of on curve a. This clearly shows the
Instabilities at f2 (a) difference in behavior between
and of Harmonic Rate (b)
on Wall Deformation frequency f2 and the fl-f2 energy

Amplitude (2a) at x*=45 mm ratio.
U_ = 16 m/sec

6.3. Discussion of the Harmonic's Origin

On the basis of these experimental results, various proposals

could be advanced to explain the harmonic's origin.

/

We have already eliminated the hypothesis of a distortion

arising in the processing of the hot wire signal, but it remains

possible that the physical phenomenon itself is nonlinear. This

would result in the propogation of harmonics.
%

However, this proposition does not seem plausible when the

harmonic ratio attains values as high as 50%. Furthermore, let us go

back to figure 12 and consider for example the variation in the

harmonic ratio between x* = 50 mm and 60 mm for a -i mm wall defor-

mation. We find the following values:

19



x* - 50 mm x* = 60turn

(x/_i/U,)sz .................... 4.96.10 -s 22.4.10 -5
(x/'P/U,):2 .................... 2.6.10 -s 3.6.10 -5
(._/t_/Ue)sjcaii_/U.).r, ......... 52 _ 16,2%

These values show that while the fundamental frequency is /437

amplified by a factor of about 4, the harmonic ratio diminishes

by 2/3. This is not compatible with the hypothesis linking the

• presence of the instabilities' first harmonic to the nonlinear

character of their development. If a nonlinear pheno_tenonwere

in fact involved, the harmonic ratio would increase in a con-

tinuous manner when the fundamental frequency was amplified.

If in contrast we look at the geographic location of the region

where the harmonic existe_ we observe that the zone where the har-

monic ratio was greatest corresponds to the zone where the exterior

velocity gradient was the most negative.

For a zero gradient, we have seen (figure 6) that the fl

frequency corresponded to the frequency having maximum amplifica-

tion according to stability theory. Now, a negative gradient

provoked a widening of the range of unstable frequencies and if

the gradient was sufficiently negative, the f2 frequency fell in

the unstable area.

To give an example, for the abscissa x* = 50 mm, corresponding

= 850, the frequency with maximum
in a flat plate (A = 0) to NR_ 1 -4
amplification had a reduced pulsatance _* of i.i x 10 . In

contrast, in the conditions of flow (A = -12) the pulsatance

corresponding to the harmoni_ _* 2 x 10-4= , had maximum amplification,

and the fundamental was located in the unstable area. The ratio

of about 2 between the two pulsatances led us to make the hypothesis

that the harmonic encountered in the experiments was due to a

laminar microflow along the deformation.

We then used the split film sensor to measure the velocity

vector's angles of incidence in the boundary layer. Figure 14 /438

.
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_il depicts the velocity vector along

Cmm_ _ the deformation (magnitude and

.e_-_--- _ -,. _ -_ direction). There did not appear

"_ "_ "_ _ ....... to be any return flow in the

0: neighborhood of the wall. There
0 10 20 30 _0 50 60 70 80 _,

were, of course, strongly per-
_ turbed zones, but the velocity vec-
_! Figure 14
_ Representation of Velocity tor's angle of incidence always
!!" Vector in the Wall Deforma-

remained relatively small.tion Zone, 2a = -i mm
(U_ = 16 m/sec)F

Under these conditions, we

_i. rejected the hypothesis of a permanent flow as the origin of the f2

frequency. However, observation of the instantaneous signal showed

us the intermittent character of f2's appearance in the unstable
bursts. This led us to readjust our hypothesis by proposing that

the f2 frequency could be due to an intermittent flow [i0]. The
absence of a threshold in the variation of the harmonic and the

harmonic ratio with deformation amplitude (figure 13) could then

be explained by a gradual increase in the intermittence of theI

microflow.
/

il
7. Conclusion

The natural instabilities which arise in a flat plate's

laminar boundary layer are composed of intermittent wave trains.

Spectral analysis of these fluctuations localized their frequencies

and allowed us to isolate their amplitude modulation spectrum.

Although there is a fundamental difference between natural insta-

bilities and those under consideration in Tollmien's and Schlichting's

_ theoretical calculations, the frequencies of the instabilities and

their amplification coefficients were identical to those predicted

i_ by stability theory. A wall deformation does not change the
!

structure of the phenomenon. It only induces an exterior velocity

gradient which, according to its sign, either amplifies or attenuates

the instabilities to a degree depending on their energy level. Obser-

vation of the instantaneous velocity fluctuation signal as well as
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spectral analysis showed that in a zone of negative gradient the 

first harmonic of the instabilities appears in the form of a perturba- 
tion grafted onto the unstable bursts of frequency fl. 

Given the significance of the harmonic under certain experimental 

conditions, its existence could not be satisfactorily explained by 

a nonlinear characterization of the phenomenon. 

We also eliminated the hypothesis of a permanent microflow being 

at the'origin of the perturbation at frequency f2. In contrast, 

the intermittent character of this perturbation is an indication 

that it might be due to a microflow that is itself intermittent. 

Such a phenomenon could not be detected by the split film anemom- 

. eter sensor, which only provided average values for the velocity's 

angle of incidence. 

Apart from the instantaneous signals and their spectra, all 

the measurements we have presented correspond to temporal averages. 

This gives the study a generalized character. The problematic 

intermittence of the instabilities makes a statistical analysis of 

the phenomenon necessary, in fact. We will thus attempt to 

restructure the boundary layer by imposing a definite, known 

artificial intermittence on it. To do this, we are investigating 

the influence of sinusoidal wall vibrations on the boundary layer. 

(Manuscript received October 30, 1975, revised February 22, 1977.) 
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